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Abstract. Multi-layer and multiplex networks show up frequently in
many recent network datasets. We consider the problem of identifying
the common community membership structure of a �nite sequence of
networks, called multi-relational networks, which can be considered a
particular case of multiplex and multi-layer networks. We propose two
scalable spectral methods for identifying communities within a �nite
sequence of networks. We provide theoretical results to quantify the
performance of the proposed methods when individual networks are
generated from either the stochastic block model or the degree-corrected

block model. The methods are guaranteed to recover communities
consistently when either the number of networks goes to in�nity
arbitrarily slowly, or the expected degree of a typical node goes to in�nity
arbitrarily slowly, even if all the individual networks have �xed size and
are sparse. This condition on the parameters of the network models
mentioned above is both su�cient for consistent community recovery
using our methods and also necessary to have any consistent community
detection procedure. We also give some simulation results to demonstrate
the e�cacy of the proposed methods.

Keywords: Spectral Clustering · Community Detection · Multi-
relational Networks · Multi-layer Networks · Stochastic block model ·
Degree-corrected block model.

1 Introduction

In this paper, we focus on the problem of identifying common community
structure present in a �nite sequene of (possibly incredibly sparse) networks.
The community detection problem can be thought of as a particular case of
vertex clustering problem, in which the goal is to divide the set of vertices of
a given network (or a �nite sequence of networks) into groups based on some
common properties of the vertices. The primary objective in the community
detection problem is to identify groups of vertices of a given network (or a �nite
sequence of networks) so that the average number of connections within the
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groups are signi�cantly more than those between the groups. Several random
graph models have been proposed in the literature for generating networks with
community structure. Examples of random graph models for a single network
with community structure include stochastic block model [7], degree-corrected
block model [8] and random dot product model [22].

1.1 Community detection methods for a single network

Many methods have been proposed in the statistics and machine learning
literature to identify the community structure (see [5] for a review) within a given
single network. An important class of methods for detecting communities within
a given network, which we refer to as spectral methods, involve the spectrum
of various matrices (e.g. the adjacency matrix, the laplacian matrix) associated
with the network. Spectral methods for community detection was introduced
in [4], and analyzed in many subsequent papers (see [1, 10, 11, 13, 17, 18]). In
addition to being model agnostic, the spectral methods are highly scalable, as
the main numerical procedure involved in these methods is matrix factorization,
and many scalable implementations of matrix factorization algorithms have been
developed in the numerical analysis literature. The accuracy of some spectral
methods in recovering communities within a given single network has been
proven theoretically if the network is dense and is generated from some form of
exchangeable random graph models [17, 19]. But, to the best of our knowledge,
no known community detection algorithm is scalable and has been proved to
perform consistently to identify communities within several kinds of sparse
network.

1.2 Existing community detection methods from multiple networks

Several approaches have been put forward to develop statistical frameworks for
inference on temporal and multi-layer network models. Although most of such
methods have not been developed with the goal of community detection, many
of them can be used for such a purpose. For example, the methods developed in
[21], [12] and [24] can be used to perform model-based community detection, and
the authors of [6] and [15] use likelihood-based methods (e.g., pro�le-likelihood)
to identify communities in networks generated from multi-layer network models.
Various other authors have proposed model agnostic procedures (see, e.g., [20],
[9], [3] and [2]) for detecting communities in multi-layer networks. Spectral
algorithms have also been used to �nd communities from a �nite sequence of
networks [14, 16]. However, most of these works lack quantitative estimates
evaluating the performances of the proposed methods and theoretical results
which guarantee the consistent recovery of communities. Also, most of these
methods including the existing spectral methods do not work when individual
networks as well as an aggregated version of the multi-relational networks, are
both sparse.
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1.3 Our Contribution

Realizing the above limitations of the existing approaches for performing
community detection on a single (resp. multiple) network (resp. networks), and
recognizing the advantages of using spectral methods (e.g., scalability and model
agnostic nature) for a given single network, we propose and analyze two spectral
algorithms for �nding the common community structure within a given �nite
sequence of networks.

The main contributions of our work can be summarized as follows.

(a) We propose and analyze two scalable and model agnostic methods, for
identifying communities within a multi-relational network having a common
community structure. These methods

• can be used to identify communities within a single network too.

• are �exible enough to accommodate both sparse and dense networks.

(b) We prove theoretically that our methods outperform existing methods when
the given network is generated from either the stochastic block model or the
degree-corrected block model or their extensions in a multi-relational setup.

(c) We also prove analytically that, under the mildest (necessary) parametric
condition, the proposed methods identify communities in the networks
generated from single or multi-layer stochastic block models and degree-
corrected block models consistently. We show that in the multi-relational
network setting, our spectral clustering methods can recover the common
community structure consistently even if each of the individual networks
has �xed size and is highly sparse (e.g., has a constant average degree) and
has connectivity below the community detectability threshold.

2 Community Detection Algorithms

A multi-relational network can be considered as an edge-colored multi-graph,
where di�erent colors correspond to edge sets of di�erent network snapshots.

The t-th snapshot G
(t)
n is represented by the corresponding adjacency matrix

A
(t)
n×n. Let Zn×K denote the actual common community membership matrix of

the nodes in each of the graphs G
(t)
n , where, Zik = 1 if the i-th node belongs to

the k-th community for all G
(t)
n . The goal is to estimate Z. The algorithms are

given in Algorithm 1 and 2.

Let [n] := {1, 2, . . . , n} for n ∈ N, Mm,n be the set of allm×nmatrices which
have exactly one 1 and n− 1 0's in each row. || · ||2, || · ||, || · ||F denote Euclidean
`2-norm, operator norm and Frobenius norm respectively. λi(·) denotes the i-th
largest eigenvalue. For the truncation parameter δ in Algorithm 1, any small
positive value is a good choice. In our implementation, we used δ = 0.01.
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Algorithm 1: Spectral Clustering of the Sum of the Adjacency Matrices
Input: Adjacency matrices A(1),A(2), . . . ,A(T ); number of communities
K; approximation parameter ε, truncation parameter δ.
Output: Membership matrix Ẑ0.

1. Obtain the sum of the adjacency matrices, A0 =
∑T
t=1 A

(t).
2. Get d̄ := 1

nT 1
T
nA01n. Let n

′ be the number of rows (having indices
1 6 k1 < k2 < · · · < kn′ 6 n) of A0 having row sum at most e(T d̄)1+δ.

3. Let A ∈ Rn′×n′ be the submatrix of A0: Ai,j = (A0)ki,kj , i, j ∈ [n′].

4. Obtain Û ∈ Rn
′×K consisting of the leading K eigenvectors of A

corresponding to its largest absolute eigenvalues.
5. Use (1+ε) approximateK-means clustering algorithm on the row vectors

of Û to obtain Ẑ ∈Mn′,K and X̂ ∈ RK×K satisfying

||ẐX̂− Û||2F 6 (1 + ε) min
Γ∈Mn′×K ,X∈RK×K

||ΓX− Û||2F .(2.1)

6. Extend Ẑ to obtain Ẑ0 ∈ Mn,K as follows. (Ẑ0)j,∗ = Ẑi,∗
(resp. (1, 0, . . . , 0)) for j = ki (resp. j /∈ {k1, . . . , kn′}).

7. Ẑ0 is the estimate of Z.

Algorithm 2: Spherical Spectral Clustering of the Sum of the Adjacency
Matrices
Input: Adjacency matrices A(1), A(2), . . . , A(T ); number of communities K;
approximation parameter ε, truncation parameter δ.
Output: Membership matrix Ž.

1. Perform till Step 4 of Algorithm 1.
2. Let n+ be the number of nonzero rows of Û. Obtain Û+ ∈ Rn+×K

consisting of normalized nonzero rows of Û, i.e. Û+
i,∗ = Ûi,∗/

∥∥∥Ûi,∗

∥∥∥
2

for i such that
∥∥∥Ûi,∗

∥∥∥
2
> 0.

3. Use (1 + ε) approximate K-median clustering algorithm on the row

vectors of Û+ to obtain Ž+ ∈Mn+,K and X̌ ∈ RK×K satisfying

(2.2)
∥∥∥Ž+X̌− Û+

∥∥∥
F
6 (1 + ε) min

Γ∈Mn′′×K ,X∈RK×K

∥∥∥ΓX− Û+
∥∥∥
F
.

4. Extend Ž+ to obtain Ž by (arbitrarily) adding n′ − n+ many canonical
unit row vectors at the end, like in Step 6 of Algorithm 1.

5. Extend Ž to obtain Ž0 ∈ Mn,K as follows. (Ẑ0)j,∗ = Ẑi,∗
(resp. (1, 0, . . . , 0)) for j = ki (resp. j /∈ {k1, . . . , kn′}).

6. Ž0 is the estimate of Z.
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3 Theoretical results about the performance of the

algorithms

We consider two di�erent models for a multi-relational network generation. The
�rst one is Multi-layer stochastic block model with (i) the latent membership
vector z = (z1, . . . , zn), where each zi ∈ [K], (ii) the set of T , K×K connectivity
probability matrices {B(t)}Tt=1 and (iii) the K×1 probability vector of allocation
in each community, π = (π1, . . . , πK).

z1, . . . , zn
iid∼ Mult(1; (π1, . . . , πK)),P

(
A

(t)
ij = 1

∣∣∣ zi, zj) = B(t)
zizj

, so(3.1)

A
(t)
ij ∼ Bernoulli(P

(t)
ij ), where P(t) := ZB(t)ZT .(3.2)

Let d be the maximum expected degree of a node, λ be the average of the smallest
eigenvalues of normalized probability matrices {B(t)}Tt=1 and

λ =
n

Td

∑
t∈[T ]

λK(B(t)) > 0(3.3)

Theorem 1. For any ε, η, δ > 0 and c ∈ (0, 1), there are constants C1 =
C1(ε, c, δ), C2 = C2(c, δ) > 0 such that if Td > C2(K/λ)1+δ, n > 3K and if
nmin > 2/λ, then the proportion of misclassi�ed nodes in Algorithm 1 is

6
(nmin

n

)−1
e−(1−c)Td + C1

(nmin

n
− e−(1−c)Td

)−2
Kλ−2(Td)−1+2η+2δ

with probability > 1 − 5 exp(−min{cTdλ, 15 (Td)2η log n}). nmin = smallest
community size. Therefore, in the special case, when (i) K is a constant and (ii)
the community sizes are balanced, i.e. nmax/nmin = O(1), then the proportion of

misclassi�ed nodes in Ẑ0 goes to zero with probability 1− o(1) if Tdλ→∞.

The other model ismulti-layer degree-corrected block model with (i) the latent
membership vector z = (z1, . . . , zn), where each zi ∈ [K], (ii) the set of T , K×K
connectivity probability matrices {B(t)}Tt=1, (iii) a set of degree parameters

ψ = (ψ1, . . . , ψn) satisfying max
i∈Ck

ψi = 1 for all k ∈ {1, 2, . . . ,K}(3.4)

and (iv) the K×1 probability vector of community allocation π = (π1, . . . , πK).

z1, . . . , zn
iid∼ Mult(1; (π1, . . . , πK)),P

(
A

(t)
ij = 1

∣∣∣ zi, zj) = ψiψjB
(t)
zizj

, so(3.5)

A
(t)
ij ∼ Bernoulli(P̃

(t)
ij ), where P̃(t) := Diag(ψ)ZB(t)ZTDiag(ψ).(3.6)

For k ∈ [K], let ñ′k :=
∑
i∈Ck∩{k1,...,kn′}

ψ2
i and τk :=

∑
i∈Ck ψ

2
i

∑
i∈Ck ψ

−2
i

be a measure of heterogeneity of ψ.
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Theorem 2. For any ε, η, δ > 0 and c ∈ (0, 1), there are constants
C1(ε, c, δ), C2(c, δ) > 0 such that if Td > C2(K/λ)1+1/δ and n > 3K is large
enough, then the total number of misclassi�ed nodes in Algorithm 2 is

(3.7) 6
n

e(1−c)Td
+ C1

 Kñ′
max

(ψminλñ′min
)2

+

√
K
∑
k∈[K] τkn(Td)−(1/2)+δ+η

λñ′
min


with probability at least 1− 5 exp(−min{cTdλ, 15 (Td)2η log n}).

Therefore, in the special case, when (i) K is a constant, (ii) the community
sizes are balanced, i.e. nmax/nmin = O(1) and (iii) ψi = αi/max{αj : zi =
zj}, where (αi)

n
i=1 are i.i.d. positive weights, then consistency holds for Ž0 with

probability 1− o(1) if E[max{α2
1, α
−2
1 }] <∞ and Tdλ→∞.

Remark 3 The condition �Tdλ → ∞" is necessary and su�cient in order to
have a consistent estimator of Z. Theorem 1 and 2 proves the su�ciency. The
necessity of the condition follows from the work of [23].

Remark 4 Note that the assertion of Theorem 1 and 2 are non-asymptotic
results, so, the asymptotic result on consistent label recovery can hold for di�erent
conditions like - (i) constant T and n → ∞; (ii) constant n and T → ∞; (iii)
K →∞ and suitable conditions on n, d and T and so on.

4 Simulation Results

We simulate multiple stochastic block model with n = 40, 000, K = 4 and
T = 10, but varying {B(t)}Tt=1 such that Tdλ increases. We simulate multiple
degree-corrected block model with n = 20, 000, K = 4 and T = 10, but varying
{B(t)}Tt=1 such that Tdλ increases. The degree parameters in multiple degree-
corrected block model are generated from U(0.5, 1).

(a) (b)

Fig. 4.1. Comparison of (i), (ii) and Algorithm 1 (Truncated Sum) (a) using normalized
mutual information and (b) using F-score.
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(a) (b)

Fig. 4.2. (a) Comparison of (iii) and Algorithm 2 (Truncated Sum) (a) using
normalized mutual information and (b) using F-score.

We implement �ve di�erent algorithms - (i) Sum: spectral clustering with
sum of adjacency matrices without truncation; (ii) Spectral sum: clustering the

rows of sum of eigen-spaces
∑T
t=1 Û

(t) of each network snapshot (where, Û
(t)
n×K

is the matrix formed by the eigenvectors of top K eigenvectors of A(t)); (iii)
Sum (Spherical): spherical spectral clustering with sum of adjacency matrices
without truncation; (iv) Algorithm 1; (v) Algorithm 2. For models generated
under multiple stochastic block model, we compare the algorithms (i), (ii) and
(iv). For models generated under multiple degree-corrected block model, we
compare the algorithms (iii) and (v). For metric of success, we use normalized
mutual information and F-score. We can see from Figures 4.1 and 4.2 that
for Tdλ between (10, 20) for multiple stochastic block model and (10, 40) for
multiple degree-corrected block model, Algorithm 1 and 2 out-performs all other
algorithms. The simulation results are in concert with the theoretical results in
Theorem 1 and Theorem 2.
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